STABILITY RELATIONS OF SIDERITE (FeCO₃) IN THE SYSTEM Fe-C-O

BEVAN M. FRENCH

Planetology Branch, Goddard Space Flight Center, Greenbelt, Maryland 20771

ABSTRACT. Stability relations of siderite (FeCO₃) in the system Fe–C–O were determined between 500 and 2000 bars in a $CO_2 + CO$ atmosphere as a function of T, $P_F (= P_{CO_2} + P_{CO})$, and f_{O_2} , using solid-phase oxygen buffers. Siderite was synthesized for the experiments by decomposition of ferrous oxalate dihydrate (FeC₂O₄.2H₂O) in sealed tubes at 2000 bars P_{H_2O} and approximately 380°C. The value of f_{O_2} was controlled by surrounding the siderite sample with either graphite or hematite-magnetite buffer mixtures.

The stability field of siderite + gas in $P_{\rm F}$ -T-f₀₂ space is a narrow wedge bounded by stable divariant reaction surfaces representing decomposition of siderite to: (1) hematice + gas, (2) magnetite + gas, (3) magnetite + graphite + O₂. The latter reaction surface lies entirely in the condensed region below the graphite buffer and is not experimentally accessible. Reactions of siderite to form iron or wüstite (Fe_{1-x}O) are not stable.

Points along the univariant equilibrium curve: siderite + hematite + magnetite + gas (SHMG) were located reversibly at: $P_F = 500$ bars, $T = 363 \pm 10^{\circ}$ C, $\log f_{0_2} = -24.8$; $P_F = 1000$ bars, $T = 365 \pm 10^{\circ}$ C, $\log f_{0_2} = -24.7$. The univariant equilibrium curve: siderite + magnetite + graphite + gas (SMGrG) passes through the following points: $P_F = 500$ bars, $T = 455 \pm 10^{\circ}$ C, $\log f_{0_2} = -25.7$; $P_F = 1000$ bars, $T = 458 \pm 10^{\circ}$ C, $\log f_{0_2} = -25.2$; $P_F = 2000$ bars, $T = 465 \pm 10^{\circ}$ C, $\log f_{0_2} = -24.4$.

In an isobaric f_{0_2} -T section, the univariant equilibrium: siderite + hematite + gas (SHG) corresponds to low temperatures and relatively high f_{0_2} values. The univariant equilibrium: siderite + magnetite + gas (SMG) is stable at higher temperatures and relatively lower f_{0_2} values. The stability of the assemblage siderite + gas is strongly dependent on T and f_{0_2} but is practically independent of the value of $P_{c0_2} + P_{c0}$. The univariant equilibrium: siderite + magnetite + graphite + gas fixes the maximum stability temperatures of siderite, 455° to 465° C in the range $P_F = 500$ to 2000 bars. In this range, siderite is not stable at f_{0_2} values above about 10^{-24} bars and decomposes to either hematite (lower T) or magnetite (higher T). The determined stability field of siderite + gas lies at f_{0_2} values above the stability field of fayalite (Fe₂SiO₄), and therefore reactions between siderite and quartz to form fayalite are not stable.

The stability relations of natural iron-rich carbonates are more complex than those determined for pure siderite. The presence of other volatile species in a natural gas phase with $P_{CO_2} + P_{CO} < P_F$ will produce lower decomposition temperatures, and the presence of H_2O may stabilize iron hydroxide phases at lower temperatures. By contrast, the substitution of Mg^{2+} , Mn^{2+} , or Ca^{2+} for Fe^{2+} will stabilize iron-rich carbonates at higher temperatures and f_{O_2} values.

During metamorphism, natural iron-rich carbonates react with available quartz and water to produce iron-rich amphiboles (grunerite). The present experimental data, combined with geological studies of metamorphosed iron-formations, suggest that this reaction occurs at about 300° to 450°C. Conversely, the coexistence of siderite + quartz in many hydrothermal veins suggests temperatures below this value. Conversion of quartz-free siderite units to magnetite in contact-metamorphic aureoles probably occurs at temperatures exceeding 400° to 450°C.

SYMBOLS AND NOTATIONS USED

Symbols used generally follow conventions of Thompson (1955) and Greenwood (1961).

 $T = temperature (^{\circ}K).$

 $P_s = isotropic$ pressure on solid phases.

Bevan M. French

- $P_{\rm F}$ = total pressure of the fluid (gas) phase.
- P_{E_i} = "osmotic equilibrium" pressure of component *i* in a fluid phase (Greenwood, 1961).
- $P_t = total pressure in a closed experimental system where <math>P_t = P_F = P_s$.
- P_i = partial pressure of component *i* in a closed experimental system where $\Sigma P_i = P_t$.
- $f_i = fugacity of component i in a fluid phase.$
- $\gamma_i =$ fugacity coefficient of component *i* in the fluid phase, defined by $\gamma_i = f_i/P_i$.
- $\Delta V_s =$ volume change of the solid phases in a reaction, defined as $\Delta V_s = \Sigma (V_s)_{\text{products}} - \Sigma (V_s)_{\text{reactants}}.$
- $\Delta G^{\circ}_{f,T}$ = standard Gibbs free energy of formation of a compound from its elements at a specified temperature and unit fugacities of gaseous components.
- $\Delta \mathbf{G^{o}}_{\mathrm{T}} = \text{standard Gibbs free energy of reaction, equal to} \\ \Sigma(\Delta \mathbf{G^{o}}_{\mathrm{f,T}})_{\mathrm{products}} \Sigma(\Delta \mathbf{G^{o}}_{\mathrm{f,T}})_{\mathrm{reactants}}$
- $\Delta H^{o}_{f,T} =$ standard enthalpy of formation of a compound from its elements.
 - $\Delta H^{\circ}_{T} =$ standard enthalpy change in a reaction.
 - $K_i(T) =$ equilibrium constant of reaction *i*, written with fugacities of gaseous components; a function of T only.
 - $C_{\rm P}$ = molar heat capacity of a substance at constant pressure.

ABBREVIATIONS FOR PHASES IN TABLES AND ILLUSTRATIONS

$S = siderite (FeCO_3)$	$W\ddot{u} = w\ddot{u}stite (Fe_{1-x}O)$
$H = hematite (Fe_2O_3)$	Gr = graphite (C)
$M = magnetite (Fe_3O_4)$	$Q = quartz (SiO_2)$
I = iron (Fe)	$\mathbf{F} = \text{fayalite} (\text{Fe}_2 \text{SiO}_4)$

G = gas phase in a $CO_2 + CO$ atmosphere

 $G^* = gas phase (O_2)$ in condensed region below the graphite buffer curve.

In tables of experimental results, occurrence of trace amounts of a phase is indicated by parentheses, as (S). Such occurrences are not believed to represent stable reaction products and may result from contamination or from metastable reaction. Clearly metastable products in a significant amount are indicated by an asterisk, as (S*). Small letters (m, s, h, et cetera) designate phases that may be in equilibrium with the observed phases but that were not detected, for example, the assemblage S + M + h.

INTRODUCTION

Iron-bearing minerals are of particular interest in petrogenetic studies because they participate in reactions involving oxidation and reduction (Eugster, 1959; Buddington and Lindsley, 1964). Their occurrence, compositions, and stability relations not only reflect the values of T and f_{0_0} during formation but also provide information about the be-

38